ISSN 1870-4069

Particle-based Simulations of Liquid Crystals
Supported by GPU Parallelization in CUDA

Jorge Fierro!, Humberto Hijar!:2

! Universidad La Salle México, Centro de Investigacion, Ciudad de México,
Mexico

2 Universidad Nacional Auténoma de México, Facultad de Ciencias,
Investigacion Cientifica, Ciudad de México,
Mexico

jorge.fierro@lasalle.mx, humberto.hijar@lasalle.mx

Abstract. Liquid crystals are fluids that show certain amount of order
in the orientation and position of their molecules in contrast with simple
fluids where both types of order are absent. They have been subject of
numerous studies due to their technological relevance. In this research
work, it is proposed a method for simulating the liquid crystal phase
with the simplest symmetry, known as the nematic phase. The method
is based on particles that interact in independent sets, which allows to
propose programming it in parallel. This is done in Graphic Processing
Units (GPUs) on NVIDIA’s CUDA architecture. It is shown that the
method allows to simulate the appearance of molecular order on repro-
ducible conditions. It is also clearly exhibited that the parallel procedure
has a much higher performance than that given by the serial version of
the same simulation algorithm.

Keywords: Liquid crystal, simulation, GPU parallelization.

1 Introduction

Introductory physics describes three states of matter: solid, liquid, and gas, which
are differentiated by the amount of order shown by their molecules [5]. Usually,
materials transition between the solid and liquid states without an intermediate
stage. However, in the late 19th century, Freiderich Reinitzer discovered that
intermediate phases can exist between these two states [4]. A few years later,
Otto Lehmann named these phases as we know them today: liquid crystals [4].
The applications of liquid crystals include displays for televisions, cell phones,
and computers known as LCDs (Liquid Crystal Displays); tunable wavelength fil-
ters; resonant cavities for tunable lasers; thermometers, and smart windows [15].
Recent research suggests their use in detecting pathogens, antigens, cancerous
tumors [21, 22|, as well as in controlling the trajectory of microorganisms [16].
A vast variety of liquid crystals is known. All of them are formed by molecules

op. T956, SY BRI Y 1S J1ososRhgHigal, e clonggted rod-shaped molecules 45 hgse

Jorge Fierro, Humberto Hijar

of N—(4-Methoxybenzylidene)-4-butylaniline (commonly referred to as MBBA)
illustrated in Figure 1 (a), or 4-Cyano—4’—pentylbiphenyl (customarily known as
5CB) illustrated in Figure 1 (b). When atomistic details are not relevant, these
molecules can be modeled as rigid rods as those illustrated in Figure 2.

@ = Carbon @ = Oxygen

© = Hydrogen @ = Nitrogen

Fig. 1. Two elongated molecules that form liquid crystal phases: MBBA (a) and 5CB
(b). Their constituents atoms can be identified by the levels at the bottom. The central
part of both molecules contains benzene rings (flat hexagons with six carbon atoms)
that give them a rather rigid structure.

The liquid crystal phase with the simplest symmetry is known as the nematic
phase. The molecular arrangement in a nematic liquid crystal (NLC) is schemat-
ically illustrated in Figure 2, where it is compared against that of the crystal
and isotropic liquid phases. In a crystal, molecules are perfectly positioned at
the nodes a periodic lattice and all of them point along the same direction.
In the completely opposite case, corresponding the a simple or isotropic liquid,
molecules move arbitrarily through the sample and they point in every direction
with the same probability. In a NLC, the centers of mass of the molecules move
arbitrarily, as in a simple liquid, but the molecular axes remain oriented around
a common axis known as the director, represented by a unit vector, i, [11]. Thus,
NLCs are states of matter with an intermediate order between that of crystal a
that of usual liquid. The reader is referred to reference [9] (in Spanish) where
concepts and mathematical aspects of liquid crystal phases are discussed in an
introductory manner.

For the previously mentioned reasons, liquid crystals are of great interest
in applied sciences and materials engineering, where computational simulations
have played a crucial role in understanding their properties due to their ability to
test a wide range of system’s parameters and to handle conditions that are hard
to achieve experimentally [1]. Recently, an algorithm known as Nematic Multi-
particle Collision Dynamics (N-MPCD) has been proposed, which describes the
NLC as a system of particles that carry an orientation vector [19]. Periodically,
the particles are allowed to interact with those in their vicinity. To do this, the
simulation space is subdivided into contiguous cubic cells within which indepen-
dent operations are performed, suggesting that the method could be parallelized.

Resialh Esmatives varianty of NEMPCL) are known. One is due to dhendipe and

Particle-based Smulations of Liquid Crystals Supported by GPU Parallelization in CUDA

Crystal

Temperature, T

Fig. 2. Schematic of the molecular order in three phases of matter: crystal (left), NLC
(center), and isotropic liquid (right). These phase occur as function of temperature
where Ts_n and Tn-1 indicate transitions from solid to nematic and from nematic to
isotropic liquid, respectively. Vector n represents the average molecular orientation in
the liquid crystal phase.

Yeomans [19] and is based on a collision operator that promotes reorientation
of particles dictated by a local mean-field potential to achieve nematic order.
The other one, due to the Mazza and coworkers [14], simulates nematic order by
incorporating explicit hydrodynamic equations of liquid crystals.

N-MPCD is an extension of a simple fluid simulation method known as Multi-
particle Collision Dynamics (MPCD), for which various algorithms that operate
in parallel have been proposed. One of the first was developed by Petersen et
al., who adapted the method to run on multiple processors of a Cray XT3 com-
puter [17]. Westphal et al. have developed an MPCD implementation based on
graphics processing units (GPUs), achieving a performance gain of up to two or-
ders of magnitude compared to a comparable version on central processing units
(CPUs) [23]. Howard et al. have presented an open-source implementation of the
algorithm that scales to run on hundreds of GPUs [13,12]. Halver et al. have
used heterogeneous GPU nodes to parallelize MPCD in an implementation based
on Cabana [7]. More recently, Ratan has created parallelized simulations based
on an hybrid Molecular Dynamics-MPCD scheme to investigate the behavior of
active matter systems [18].

The aim of the present work is to parallelize the N-MPCD method, in the
Shendruk and Yeomans version, taking advantage of the fact that it works with
quantities representing particles grouped in discrete and independent spaces. The
problem to be solved consists of performing operations on the properties of the

| W&}ﬁsghat make up the system siglultaneﬁuslyc%% 3%1&%8%%1%&%9)?%%&

Jorge Fierro, Humberto Hijar

essary, as well as performing parallel convergent operations that require particles
grouped in the system’s cubic cells. All of this must be done while respecting the
physical and mathematical rules that produce nematic behavior in the system.
The goal is for this simulation to run on GPUs. Additionally, the performance of
this parallel implementation is expected to surpass that of a previously developed
serial version (8, 10].

One of the main challenges in developing the GPU-parallelized N-MPCD
method was that many processing threads needed to write to the same memory
section simultaneously. This problem was solved by using a processing thread
for each collision cell, dedicated exclusively to averaging the properties of the
particles contained within it. This implementation improved computation time
by an order of magnitude compared to the serial version.

The content of this article is as follows. In Section 2, the basic characteristics
of the N-MPCD algorithm will be described. Subsequently, in Section 3, the
parallelization of the method on GPUs will be discussed. In Section 4, the main
results of our research will be presented, and in Section 5, conclusions will be
synthesized and possible future work will be proposed.

2 Simulation Method

The simulation system consists of point particles that move within a cubic box
with side length L, which is considered an integer multiple of the unit length a.
All particles have the same mass m. Their positions and velocities are represented
by the vectors r; and v;, with i = 1,2, ..., N. Each particle has an associated unit
orientation vector, 1i;, which will serve to generate the characteristic orientation
order of NLCs. The vectors r;, v;, and 0; are considered continuous functions
of time, ¢, and will be updated to generate system’s dynamics. The algorithm
responsible for this consists of two steps known as the propagation step and the
collision step. Both will be described below.

2.1 Propagation Step

Particles move in uniform rectilinear motion for a fixed time interval A¢. This
updates the position of each particle according to the equation

r; (t+ At) = 1; () + v () At. (1)

This displacement implies that some particles will leave the simulation box.
To keep the number of particles constant and approximate macroscopic behavior,
periodic boundary conditions are imposed. Thus, each particle that exits one side
of the box is replaced by another that enters from the opposite side with the
same velocity and orientation. This is achieved through the transformation

x; — x; — Lfloor (%) , (2)

where the floor function, floor (x), that returns the largest integer less than or
equal to x, and z; is the first Cartesian component of r;. A similar transformation

RedRRLIES o Componctsdisfihei- 2 ISSN 1870-4069

Particle-based Smulations of Liquid Crystals Supported by GPU Parallelization in CUDA

2.2 Collision Step

After propagation, particles are grouped into cubic cells of volume a3, distributed
in a cubic lattice which fills the entire simulation box. These cells are called
collision cells because the particles that end up within the same cell participate
in an exchange of velocities and orientations that is equivalent to a fictitious
multiple collision among them. At every collision step the number of particles in
each collision cell could be different since particles move from one collision cell
to another during the propagation step. At any given instant, the physical fields
of the system can be calculated using the particles located within each collision
cell.
The new velocities are assigned using the Andersen thermostat rule [6],

vi(t+ At) = vo(t) + &, — £°, (3)

where
1 &
ve(t) = e ; Vi, (4)

is the center of mass velocity in the cell where the particle is located, with N¢
being the number of particles in that cell.
In addition, in equation (3), &; is a random contribution taken with proba-

bility \
m 2 m
Pe) = (somr) o (gt €).)

which corresponds to the velocities of molecules in a fluid at temperature T,
with kg being the Boltzmann constant.
In equation (3),

1 &
5 :ﬁ;ﬁ" (6>

is a term that guarantees the local conservation of linear momentum after ve-
locity update.

To update orientations, it is considered that the particles within the same
collision cell interact with the director produced by themselves, n°. To select the
new orientations of the particles in the collision cells, the probability distribution
is considered [19]

. 3US°¢ 1 .
P (0;)sin6; db; = Cyexp <2kBT (cos2 0; — 3)> sin 6; db;, (7)
where Cj is a normalization constant, 6; is the angle between G; and n°, U is
a scalar quantity referred to as the nematicity, which defines the order in the
simulated phase, and S° is the so-called order parameter in the cell, which is the
largest eigenvalue of the tensor order parameter at the cell,

N¢

1 .
Q=+ > (Ban, —T). (8)
ISSN 1870-4069 28=1 Research in Computing Science 154(3), 2025

Jorge Fierro, Humberto Hijar

S° measures the amount of orientational order and takes two extreme values,
1, when the alignment

S5¢ =0, when the fluid is completely disordered, and S¢ =

of the particles is perfect. In addition, n¢ is the eigenvector of Q¢ corresponding

to S°¢.

The probability density in equation (7) has the form of a canonical law based
on the Maier-Saupe mean-field energy. It is known as the Dawson distribution
and is illustrated in Figure 3 for different values of U. It can be seen that when U
is small, the probability of the angles tends to be uniform, implying a disordered
phase; while as U increases, the most probable angle is close to 0, indicating
alignment of the particles around n°.

W +~
1 T

S}
I
N
7

Probability, P(0) sin(6)

_
g ym—
N

===
~

N
N\

Fig. 3. Dawson distribution, equation (7), for diverse values of the quantity US° nor-

malized with respect to kgT.

To validate the numerical implementation, the orientations of the resulting
particles were taken in tests with different values of U. From these orientations,
histograms were constructed that fit very well with the theoretical distribution
given by equation (8), as shown in Figure 4.

3 Parallelization

3.1 General Considerations

The program was written in C and the CUDA API. Graphic cards were chosen
instead of the machine’s central processor because the former typically have
more processing threads. The computing resources used for this research and the

ResN SR IO Shinsgagrical fes tiogeere: agomputer with a Linux operading Svatem,

US‘= 12
—————— US‘= 24
--------- US‘= 438
---------- US‘= 9.6
-------- US’=192
A Rttt
3u/8

Particle-based Smulations of Liquid Crystals Supported by GPU Parallelization in CUDA

5 T T
= I"V‘ ° USC: 12 |
I = US‘=04] |
s |7 + US’=48
= £ US=96] A
‘A i a ! v c
2l US° =192
S .
R, P ‘.v'\‘
-~ F ! N - A
S 'y
= | R
:5 2 i’ i o/'/ \ i,\\]
< HF a Vo e
< Li ’ . 4
S [if s el
[a® i TN A '\\\
1B 7 , \ ! - —
peoor s R N N
[\ - “on T~ .
i'/. /l/ \ R N "~ o r -
:/./ \) \x\ N ~. L] \l-\?__-_
Z R TR (T St TS SO S-S IS0
%.0 /8 /4 3n/8 /2
Angle, 6

Fig. 4. Dawson distribution for diverse values of the quantity US® normalized with
respect to k7. Curves are obtained from equation (7) whereas symbols correspond
to normalized frequencies on samples of 81,920 angles generated by the numerical
implementation.

equipped with a Tesla T4 graphics card that has 2,560 CUDA threads, and an
Intel Xeon E5 2640 CPU with 16 processing threads and an x86 64 architecture.

When analyzing the various stages that comprise a simulation step in the N-
MPCD method interval At, we can see that these fall into one of two categories:

1. exhaustive stages, where each particle is analyzed individually; and
2. summarized stages, where the system is analyzed at the collision cell level.

Armed with this information, we can see that we have two minimal computing
units, the particle and the collision cell, depending on the simulation stage we
are in. To maximize the amount of work carried out in parallel, the number of
processing threads during the program execution is chosen to be equal to the
minimal computing unit.

To store the processed information and avoid memory collisions, two large
arrays of structures corresponding to the two minimal computing units were
created. It is worth mentioning that older versions of CUDA do not support the
use of double-precision floating-point variables. However, in our tests, we noticed
that the truncation error produced by using float variables is too large to obtain
reliable simulation results. Therefore, the produced code cannot be executed on
older GPUs [20].

Another consideration to take into account is the limitations of the x86 64
computer architecture. In our case, we encountered two very important ones,
one technical and one historical. The technical limitation is that in the x86 64

|ssﬁffé’96?4‘b%‘érev graphics memory is diff%ent fr%&rarnéﬁ% Oenr%&r% &9 e%(% Eg%n&%%on

Jorge Fierro, Humberto Hijar

to be computed on the GPUs must be transferred between them. The historical
limitation has to do with the hardware restrictions that existed when the PC
standard was proposed, as on certain equipment, the number of memory ad-
dresses available for the GPU is less than what would be necessary to index all
the graphics memory to the computer’s data bus.

To maintain compatibility with x86 64, NVIDIA GPUs do not expose all
their memory to the data bus simultaneously. Instead, they expose only a small
memory window, which can be shifted at the processor’s request to allow read-
ing and writing of the entire graphics memory. This procedure is schematically
illustrated in Figure 5. While this solution allows graphics cards to have large
amounts of memory, it makes the data transfer between RAM and graphics mem-
ory a slow process that consumes CPU time and, therefore, should be avoided
as much as possible.

GPU memory

T
|
| <
|
f

——

Memory visible to the data bus

Fig. 5. Visual representation of the graphics memory in modern systems. The green
rectangle represents all the graphics memory inside the GPU. The CPU can only read
or write information inside the blue window. The CPU can move the window in order
to write the whole graphics memory.

Lastly, it should be noted that all functions executed within the GPU must be
of the void type, so data transfer and error conditions between functions must be
handled via pointers [2]. Taking into account the general considerations above, it
was decided to implement the parallelized N-MPCD algorithm according to the
block diagram shown in Figure 5(a). For comparison purposes, the corresponding
diagram for a serial version is also shown in Figure 5(b). The main steps of the
method are detailed below.

3.2 Initialization

The initialization process is exhaustive, where each particle in the simulation
system is randomly assigned initial values of position, orientation, and velocity.
Fortunately, CUDA includes functions for generating random numbers using var-
ious distributions. For each numerical test, random number series were generated

RedLOIR iRtk 8, et g sppaputer g clock. ISSN 1870-4069

Particle-based Smulations of Liquid Crystals Supported by GPU Parallelization in CUDA

Threads Threads
H ’_l H ﬂ ﬂ NNC|_| |—I
Inicialization Inicialization
| | I1 IT I I I

I TT TT TT TT 1T [1 T— —
Threads reduction (Ijettlng average orientations

L |

| Propagation | | Propagation]
C |

|

1| H H ” l Nl | [| Seiparating particles into boxes
Getting average orientations || Eigenvalues and eigenvectors calculation |
I 1I'|hrelalds IrledL:ctionI | : : Reorientation |
[Separating par£ic|ézs into boxes | I — Normalize |
Thread's clreation [Write to hard drive |
I

[Eigenvalues and eigenvectors calculation |
L 1T IT 1T T T I

Threads creation

IHININININECE

Reorientation
I N I N 1
[Normalize |
L TT TT TT TT T [T
Threads reduction

T I
[Write to hard drive |
L1

Fig. 6. Block diagram of the N-MPCD method, parallelized (a) and serial (b). The
collision step in both cases goes from the calculation of the particles average orientation
to the normalization. The serial algorithm runs this operations on a single processing
thread.

3.3 Propagation

The movement stage remains an exhaustive process where the position of the
particles within the simulation system is updated assuming uniform rectilinear
motion. This is done by simply multiplying the velocity by At and adding the
result to the current position of the particle for each of the Cartesian axes, as
indicated by equation (1).

Boundary Conditions The N-MPCD method assumes that the simulation
system is surrounded by identical copies of itself. Therefore, if a particle exits
the system, it will be automatically replaced by an identical one from one of the
adjacent systems. In practice, due to the finite nature of computing resources, the
same particle is reintroduced into the system programmatically by implementing
equation(2).

3.4 Collision

The collision stage, unlike the previous ones, is no longer exhaustive. To obtain
| s&dlfg%fﬁ’dfé&atlon that describes the cugrent state Ofiw ocr%h :|3r118 Fe%ucgléa(g pesies-

Jorge Fierro, Humberto Hijar

sary to first average the orientation and velocity of all the particles within them.
Ideally, while the number of processing threads remains equal to the number of
simulated particles, each particle would add its own data to the average of its
corresponding cell so that after thread reduction, each collision cell performs the
final division. The problem with this implementation is that it inevitably leads
to race conditions between the different processing threads writing data to the
same variable. Traditionally, this would not be an issue as it is easily solved by
implementing a semaphore [3]. Unfortunately, the current state of the CUDA
API does not include semaphore functions.

To avoid race conditions, we chose to average the particle data after thread
reduction, ensuring that each collision cell sums its own average. This way, we
avoid having multiple threads attempting to write to the same variable. Although
this implementation is not as efficient as the one previously described, it still
performs parallel work, making it faster than a completely serial implementation.

Calculation of the Director Vector To reorient the particles within each col-
lision cell, the N-MPCD method requires calculating the director vector around
which the particles will rotate. This is clearly demonstrated by equation (7),
which depends on the angle each particle forms with its local director.

As mentioned, the director is calculated by obtaining the eigenvalues and
eigenvectors of the order parameter tensor, Q¢, which is defined by equation (8).
The scalar order parameter in the cell, S€, is the highest eigenvalue of Q¢, while
the corresponding eigenvector is the local director n°.

As we can see, calculating Q€ leads us once again to a race condition problem.
In this specific case, CUDA provides a set of so-called atomic functions, which
are designed to perform the four basic arithmetic operations in parallel for the
different types of numerical variables that exist in the C language [2].

Although atomic functions do a good job of handling possible collisions be-
tween processing threads, in the numerical tests carried out in this project, it
was noted that when the size of the simulated system exceeds 83 particles, the
number of collisions becomes so large that the GPU has to dedicate a significant
amount of time resolving them before it can perform the summation. In the long
run, this causes the execution of the parallel program to be slower than the serial
version. Therefore, we opted to perform this part of the program serially, once
again choosing a suboptimal implementation but maintaining the integrity of
the results.

Assignment of New Orientations Once the calculation of S¢ and n° is
completed, we obtain new orientations for the particles from the Dawson distri-
bution, equation (8). New velocities are also assigned to them from equations
(4) to (6).

3.5 Writing to Disk
Finally, the obtained results are written to the hard disk. Due to physical con-

reSiaintE i the tovemept, of yead /wyite heads in most hard dislg, this, fggot

Particle-based Smulations of Liquid Crystals Supported by GPU Parallelization in CUDA

really a parallelizable process. However, it is possible to generate an additional
processing thread that writes data to disk while the GPU continues executing
the program.

4 Results

The numerical tests performed aim to establish the physical validity of the
method and its performance compared to an existing serial version.

4.1 Nematic Behavior

The method allows observing an orientationally ordered phase for certain values
of the nematicity, U. In a first set of simulations, tests were performed for a
cubic system with side length L = 32a, where we maintained an average of
20 particles per collision cell. The average order parameter was calculated for
different values of U = 1,2,4,8, 16,20, and 32 kgT.

The results obtained are illustrated in Figure 7, where a transition from
disordered states, where S¢ ~ 0, to ordered states with S ~ 0.8 is observed. The
former correspond to simple fluid phases and are obtained for U < 5kgT. The
ordered states are observed when U > 5 kgT and correspond to nematic phases.

1.0 ; T
L . ' 4
Py]
03)/ 0.8 —
—
3t i
E
g 0.6 —
g | i
o
S 04- |
=i -
o L ° i
= ® Parallel
S 0228 7
E L 4
! ! !
0'00 10 20 30 40

Nematicity, U

Fig. 7. Behavior of the orientational order of N-MPCD systemas as function of U. Re-
sults show that systems achieve order as U increases. A slight difference between results
from the serial and parallel implementations can be observed, which is attributable to
the numerical precision used in each case.

Another way to understand this behavior is through Figure 8, which illus-
trates the state of the simulated system using the GPU-parallelized code for dif-

1sSh7iE ypdyes of U Two completely disgrdered.states can be scen when [== Jjse T

Jorge Fierro, Humberto Hijar

and U = 4 kpT, cases 7(a) and 7(b), respectively. On the other hand, the system
acquires orientational order for values U = 8 kgT and U = 16 kgT, cases 7(c)
and 7(d), respectively.

0.02502 04 0.6 08 10
S B S —

SC

Fig. 8. Ordered and disordered phases simulated by N-MPCD parallelized in GPUs.
(a) Disordered sate at U = 1 kgT'. (b) Disordered sate at U = 4kgT. (c) Nematic state
at U = 8kpT. (d) Nematic state at U = 16 kg7T. Small bars indicate the local director
field whereas the color scale at the bottom represents the local order parameter. Notice
that orientation vectors correspond to local averages in the collision cells. They are not
orientations of the individual particles of the method. This is why they are distributed
over the same positions.

4.2 Performance

To estimate the performance of the developed implementation, we considered
the computation time, as traditional performance comparison methods depend

Rl c‘i1h|% %b%rné%&& ngﬁ{éil‘l%%gture o‘,gothe processors where the Co%éﬁ@?&%égd

Particle-based Smulations of Liquid Crystals Supported by GPU Parallelization in CUDA

The first comparison was made between a series of simulations where the
nematicity was modified, keeping the parameters fixed: L = 32 a, 20 particles on
average per collision cell, At = 0.1, and kg7 = 1.0, and m = 1. The reported val-
ues are the result of a sample of 100 consecutive simulations for each nematicity
value. The computation time shown in Table 1 is the average over these samples.
It is worth mentioning that the computation times include contributions from
writing to disk, which aims to save the information corresponding to the state
of the system (value of the order parameter in each collision cell) after each step
of the algorithm. This file writing can be considered optional as its purpose was
to allow visualization of the system configuration.

Table 1. Average computing times of the parallel N-MPCD method, using different
values of U whit parameters N¢ =20, At =0.1, kgT =1y m=1.

Nematicity (U) Computing time (h:m:s)

1 00:02:15
2 00:02:15
8 00:02:20
16 00:02:17
32 00:02:17

Execution times were also calculated for systems of different sizes with 20
particles on average per collision cell and fixed U = 1 kgT'. The results obtained
in this case are shown in Table 2 for the serial implementation of the N-MPCD
method, whereas Table 3 reports on simulation times obtained with the parallel
implementation. Notice that the number of collision cells used to assess the
performance of the method varied from 8% = 512 to 643 = 262 144, whereas the
total number of simulated particles varied from 10240 to 5242 880, respectively.

Table 2. Average computing times of a serial implementation of the N-MPCD method
for different values of N, with parameters U = 1, N¢ = 20,At = 0.1, kgT = 1 and
m = 1.

System size (N) Computing time (h:m:s)

83 00:00:15
163 00:01:32
243 00:05:39
323 00:07:49
483 00:27:05
64° 01:25:01

It was observed that the performance of the parallel algorithm is much supe-

| SSH%S;OO 45%?) serial equivalent. This behéalvior iSR%fega}}%haﬁni%:%(rim ‘fjltlllr%rlsggnilcle}]]%%? ztéiges

Jorge Fierro, Humberto Hijar

Table 3. Average computing times of a parallel implementation of the N-MPCD
method for different values of N, with parameters U = 1, N¢ = 20,At = 0.1, kgT =1
and m = 1.

System size (N) Computing time (h:m:s)

83 00:00:02
163 00:00:16
243 00:00:46
323 00:02:15
483 00:05:49
643 00:12:53

are compared graphically as in Figure 4.2. In the most significant cases, the sys-
tem sizes were L = 48 a and L = 64 a, with the reduction in computation time
achieved by the parallelized method being approximately 80% and 85%, respec-
tively. In this regard, it can be concluded that our implementation constitutes a
solid first step in the development of a liquid crystal simulation method that, in
the near future, could serve as a robust tool for the analysis of such systems.

Since the method developed in this work deals with non-sequential program-
ming, it is convenient to show the algorithm’s scaling, also known as speedup,
as well as its efficiency. On the one hand, speedup is defined as the ratio of
serial to parallel computation times. On the other hand, efficiency is defined as
the ratio of speedup to the number of processing threads. The precise values of
speedup and efficiency of the method developed in this research are shown in
Table 4, which confirms the high performance achieved by the GPU-parallelized
implementation.

6,000 ‘ : :
%]\ [0 serial [0 parallel 5,101
g S
]
B
= 4,000 R
(]
E
=]
g 2,000 1,625 -
=
5 469 e
= 339 . 349
co 2 9216 i 25 - ||

T T I I I I
83 163 243 323 483 643

Collision cells, N

Fig. 9. Comparison between simulation times of the parallel and serial programs (blue
and red bars, respectively) for different system sizes quantified by the total number of

ReQ AL SSkting Science 154(3), 2025) ISSN 1870-4069

Particle-based Smulations of Liquid Crystals Supported by GPU Parallelization in CUDA

Table 4. Speedup and efficiency of the parallel implementation of the N-MPCD method

System size (N) Speedup Efficiency

83 217 4.0x 1073
163 1.49 3.6 x 107*
243 2.30 1.6 x 1074
323 3.12 9.5 x 107°
483 4.76 4.3 x 1075
64° 41.67 1.5 x 107*

5 Conclusions

In this research work, a GPU-parallelized algorithm was implemented to simulate
nematic liquid crystals (NLC). The approach used to reproduce the physical
characteristics of the nematic phase was inspired by the Nematic Multiparticle
Collision Dynamics (N-MPCD) method, which combines particle movements
with collision rules to satisfy equilibrium conditions and control the orientational
order characteristic of NLCs. Collisions between particles occur in limited and
independent spatial regions, allowing operations to be distributed in parallel.
The parallelized development was based on NVIDIA technology. The simulations
were executed on Tesla T4 cards with 2,560 processing threads, on a computer
with a Xeon E5 CPU and x86 64 architecture.

The advantages of the developed code include a significant reduction in com-
putation time and the ability to simulate systems with more particles compared
to a serial version of the algorithm. Specifically, the numerical tests performed
resulted in a reduction of computation time by an order of magnitude when com-
pared to tests of a serial implementation. Though, in principles, this reduction
has to be compared with the two orders of magnitude gain reported for other
MPCD implementations based on GPUs [23], it has to be stressed that such
implementations do not simulate fluids with nematic features. In addition, it is
worth emphasizing that using a GPU with more processing threads could be
expected to result in even greater time reductions. Notably, even in the largest
systems, GPU memory was not an issue during the method’s execution.

Due to the complexity of the dynamics of liquid crystals, the code does not
incorporate some of the steps proposed in the original N-MPCD algorithm ref-
erenced in [9]. Our implementation does not include the coupling steps between
flow and orientation variables. This coupling refers to the fact that in a real lig-
uid crystal, the flow can induce director reorientation and a change in molecular
orientation can induce flow.

Flow-induced reorientation can be incorporated in terms of the spatial deriva-
tives of fluid velocity, which are estimated using finite differences between the
velocities of different collision cells. These spatial changes in velocity impose

ishPIgHERoSg the director in each cell fhus causing reorientation. O the ather

Jorge Fierro, Humberto Hijar

hand, flow induced by reorientation is incorporated by transforming the angu-
lar momentum gain generated by reorientation into orbital angular momentum.
Both mechanisms require summarized and extended operations whose parallel
implementation is under development.

For future work, it is proposed to complement the method with external
forces, such as electric fields or flows, to explore the algorithm’s capability to
reproduce more complex situations, making it a reliable predictive tool for the
behavior of liquid crystals. Additionally, it is recommended to develop a graphical
interface that allows for user-friendly manipulation of simulation parameters and
to create versions of the algorithm that can run on other hardware platforms
not limited to NVIDIA technology.

References

1. Care, C., Cleaver, D.: Computer simulation of liquid crystals. Reports on progress
in physics 68(11), 2665 (2005)

2. Cook, S.: CUDA programming: a developer’s guide to parallel computing with
GPUs. Morgan Kaufmann, Waltham (2012)

3. Downey, A.: The Little Book of Semaphores. Green Tea Press, Massachusetts
(2016)

4. Dunmur, D., Sluckin, T.: Soap, science, and flat-screen TVs: a history of liquid
crystals. Oxford University Press, Oxford (2014)

5. Feynman, R., Sands, M., Leighton, R.: The Feynman Lectures on Physics, vol. II.
Basic Books, New York (2011)

6. Gompper, G., Ihle, T., Kroll, D.M., Winkler, R.G.: Multi-particle collision dy-
namics — a particle-based mesoscale simulation approach to the hydrodynamics
of complex fluids. In: Holm, C., Kremer, K. (eds.) Advanced Computer Simula-
tion Approaches for Soft Matter Sciences III, vol. 221, p. 1-87. Springer, Berlin,
Heidelberg (2009)

7. Halver, R., Junghans, C., Sutmann, G.: Using heterogeneous gpu nodes with a
cabana-based implementation of mpcd. Parallel Computing 117, 103033 (2023),
https://www.sciencedirect.com /science/article/pii/S016781912300039X

8. Hijar, H.: Hydrodynamic correlations in isotropic fluids and liquid crystals sim-
ulated by multi-particle collision dynamics. Condens. Matter Phys. 22(1), 13601
(2019)

9. Hijar, H.: Curso introductorio de cristales liquidos i: fases y propiedades
estructurales. Revista Mexicana de Fisica E (2024), in press, also at
https://doi.org/10.48550/arXiv.2403.03366

10. Hijar, H., Halver, R., Sutmann, G.: Spontaneous fluctuations in mesoscopic simu-
lations of nematic liquid crystals. Fluct. Noise Lett. 18(3), 1950011 (2019)

11. Hirst, L.: Fundamentals of Soft Matter Science. CRC Press, Boca Raton (2012)

12. Howard, M.P., Nikoubashman, A., Palmer, J.C.: Modeling hydrody-
namic interactions in soft materials with multiparticle collision dy-
namics. Current Opinion in Chemical Engineering 23, 34-43 (2019),
https://www.sciencedirect.com/science/article/pii/S2211339819300024, fron-
tiers of Chemical Engineering: Molecular Modeling

13. Howard, M.P., Panagiotopoulos, A.Z., Nikoubashman, A.: Efficient mesoscale

R&eearchh%dégr%/%gl- S cel\/l%ﬂgf%%le co:l}[ision dynamics with maﬁ%l?(md_)%gélel

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Particle-based Smulations of Liquid Crystals Supported by GPU Parallelization in CUDA

gpu acceleration. Computer Physics Communications 230, 10-20 (2018),
https://www.sciencedirect.com/science/article/pii/S0010465518301218

Lee, K.W., Mazza, M.G.: Stochastic rotation dynamics for nematic liquid crystals.
J. Chem. Phys. 142(16), 164110 (2015)

Palffy-Muhoray, P.: The diverse world of liquid crystals. Phys. Today 60, 54-60
(2007)

Peng, C., Turiv, T., Guo, Y., Wei, Q.H., Lavrentovich, O.D.: Command of active
matter by topological defects and patterns. Science 354, 882-885 (2016)

Petersen, M., Lechman, J., Plimpton, S., Grest, G., Veld, P., Schunk, P.: Mesoscale
hydrodynamics via stochastic rotation dynamics: Comparison with lennard-jones
fluid. J.Chem.Phys 132, 174106 (2010)

Ratan, S.S.: Gpu-based multiscale simulation to model active matter hydrodynam-
ics in fluid medium (2023), bS-MS Thesis. Indian Institute of Science Education
and Research Pune

Shendruk, T.N., Yeomans, J.M.: Multi-particle collision dynamics algorithm for
nematic fluids. Soft Matter 11, 5101-5110 (2015)

Soyata, T.: GPU Parallel Program Development Using CUDA. CRC Press, Boca
raton (2018)

Tomilin, M.G., Povzun, S.A., Kurmashev, A.F., Gribanova, E.V., Efimova, T.A.:
The application of nematic liquid crystals for objective microscopic diagnosis of
cancer. Lig. Cryst. Today 10, 3-5 (2001)

Wang, H., Xu, T., Fu, Y., Wang, Z., Leeson, M., Jiang, J., Liu, T.: Liquid crystal
biosensors: Principles, structure and applications. Biosensors 12, 639-666 (2022)
Westphal, E., Singh, S., Huang, C., Gompper, G., Winkler, R.: Multiparticle col-
lision dynamics: Gpu accelerated particle-based mesoscale hydrodynamic simula-
tions. Comput.Phys.Commun 185, 495-503 (2014)

ISSN 1870-4069 35 Research in Computing Science 154(3), 2025

